Cationic Vacancy Defects in Iron Phosphide: A Promising Route toward Efficient and Stable Hydrogen Evolution by Electrochemical Water Splitting

نویسندگان

  • Wai Ling Kwong
  • Eduardo Gracia-Espino
  • Cheng Choo Lee
  • Robin Sandström
  • Thomas Wågberg
  • Johannes Messinger
چکیده

Engineering the electronic properties of transition metal phosphides has shown great effectiveness in improving their intrinsic catalytic activity for the hydrogen evolution reaction (HER) in water splitting applications. Herein, we report for the first time, the creation of Fe vacancies as an approach to modulate the electronic structure of iron phosphide (FeP). The Fe vacancies were produced by chemical leaching of Mg that was introduced into FeP as "sacrificial dopant". The obtained Fevacancy-rich FeP nanoparticulate films, which were deposited on Ti foil, show excellent HER activity compared to pristine FeP and Mg-doped FeP, achieving a current density of 10 mA cm-2 at overpotentials of 108 mV in 1 m KOH and 65 mV in 0.5 m H2 SO4 , with a near-100 % Faradaic efficiency. Our theoretical and experimental analyses reveal that the improved HER activity originates from the presence of Fe vacancies, which lead to a synergistic modulation of the structural and electronic properties that result in a near-optimal hydrogen adsorption free energy and enhanced proton trapping. The success in catalytic improvement through the introduction of cationic vacancy defects has not only demonstrated the potential of Fe-vacancy-rich FeP as highly efficient, earth abundant HER catalyst, but also opens up an exciting pathway for activating other promising catalysts for electrochemical water splitting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molybdenum phosphide: a new highly efficient catalyst for the electrochemical hydrogen evolution reaction.

Molybdenum phosphide was adopted as a new electrocatalyst for the hydrogen evolution reaction for the first time, exhibiting an excellent electrocatalytic activity with a small Tafel slope of 60 mV dec(-1), which is amongst the most active, acid-stable, earth abundant HER electrocatalysts reported to date.

متن کامل

Vapor-solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis.

Electrochemical water splitting into hydrogen and oxygen is a promising technology for sustainable energy storage. The development of earth-abundant transition metal phosphides (TMPs) to catalyze the hydrogen evolution reaction (HER) and TMP-derived oxy-hydroxides to catalyze the oxygen evolution reaction (OER) has recently drawn considerable attention. However, most monolithically integrated m...

متن کامل

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

Hydrogen evolution catalyzed by cobaloximes.

Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H(2)O, CO(2)) to energy-rich ones (O(2), (CH(2)O)(n)). Scientists are working hard to develop efficient artificial photosynthetic systems toward the "Holy Grail" of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to ...

متن کامل

Application of Pd-Substituted Ni-Al Layered Double Hydroxides for the Hydrogen Evolution Reaction

Clean production of hydrogen from electrochemical water splitting has been known as a green method of fuel production. In this work, electrocatalytic hydrogen evolution reaction (HER) was investigated at new prepared layered double hydroxides (LDH) in acidic solution. NiAl/carbon black (CB) LDH was monitored using x-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scannin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017